Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We calculate cross sections for fine-structure transitions of Ne+, Ar+, Ne2+, and Ar2+in collisions with atomic hydrogen by using quantum-mechanical methods. Relaxation rate coefficients are calculated for temperatures up to 10,000 K. The temperature-dependent critical densities for the relaxation of Ne+, Ar+, Ne2+, and Ar2+in collisions with H have been determined and compared to the critical densities for collisions with electrons. The present calculations will be useful for studies utilizing the infrared lines [Neii] 12.8, [Neiii] 15.6, [Neiii] 36.0, [Arii] 6.99, [Ariii] 8.99, and [Ariii] 21.8μm as diagnostics of, for example, planetary nebulae and star formation.more » « less
-
ABSTRACT Using a quantum-mechanical close-coupling method, we calculate cross-sections for fine-structure excitation and relaxation of Si and S atoms in collisions with atomic hydrogen. Rate coefficients are calculated over a range of temperatures for astrophysical applications. We determine the temperature-dependent critical densities for the relaxation of Si and S in collisions with H and compare these to the critical densities for collisions with electrons. The present calculations should be useful in modelling environments exhibiting the [S i] 25 μm and [S i] 57 μm far-infrared emission lines or where cooling of S and Si by collisions with H is of interest.more » « less
-
ABSTRACT Fine-structure transitions can be involved in various processes including photon absorption, charge transfer, and inelastic collisions between ions, electrons, and neutral atoms. We present fine-structure excitation and relaxation cross-sections for the collisions of the first few members of the carbon isoelectronic sequence (C, N+ and O2 +) with atomic hydrogen calculated using quantum-mechanical methods. For C, the scattering theory and computational approach is verified by comparison with previous calculations. The rate coefficients for the collisional processes are obtained. For N+ and O2 +, the transitions correspond to the lines [O iii] 52 μm, [O iii] 88 μm, [N ii] 122 μm, and [N ii] 205 μm, observed in the far-infrared in the local universe and more recently in high-redshift galaxies using radio interferometry. The influence of different potentials on the cross-sections and rate coefficients are demonstrated.more » « less
-
Abstract The utility of the far-infrared lines of oxygen as diagnostics of gas outflows and for other applications depends on accurate descriptions of the rate coefficients for excitation (and relaxation) through collisions with electrons and with hydrogen atoms. For O and H collisions, earlier calculations of rate coefficients show discrepancies leading to ambiguity in astrophysical applications. In this note we introduce a methodology that yields consistent sets of rate coefficients for a number of cases. We then apply our method to the O–H system in order to investigate the discrepancies. The present rate coefficients will be of particular interest for modeling observations of astrophysical environments in the far-infrared.more » « less
-
Context.One of the main problems in astrochemistry is determining the amount of sulfur in volatiles and refractories in the interstellar medium. The detection of the main sulfur reservoirs (icy H2S and atomic gas) has been challenging, and estimates are based on the reliability of models to account for the abundances of species containing less than 1% of the total sulfur. The high sensitivity of theJames WebbSpace Telescope provides an unprecedented opportunity to estimate the sulfur abundance through the observation of the [SI] 25.249 µm line. Aims.Our aim is to determine the amount of sulfur in the ionized and warm molecular phases toward the Orion Bar as a template to investigate sulfur depletion in the transition between the ionized gas and the molecular cloud in HII regions. Methods.We used the [S III] 18.7 µm, [S IV] 10.5 µm, and [S l] 25.249 µm lines to estimate the amount of sulfur in the ionized and molecular gas along the Orion Bar. For the theoretical part, we used an upgraded version of the Meudon photodissociation region (PDR) code to model the observations. New inelastic collision rates of neutral atomic sulfur with ortho-and para- molecular hydrogen were calculated to predict the line intensities. Results.The [S III] 18.7 µm and [S IV] 10.5 µm lines are detected over the imaged region with a shallow increase (by a factor of 4) toward the HII region. This suggests that their emissions are partially coming from the Orion Veil. We estimate a moderate sulfur depletion, by a factor of ~2, in the ionized gas. The corrugated interface between the molecular and atomic phases gives rise to several edge-on dissociation fronts we refer to as DF1, DF2, and DF3. The [S l] 25.249 µm line is only detected toward DF2 and DF3, the dissociation fronts located farthest from the HII region. This is the first ever detection of the [S l] 25.249 µm line in a PDR. The detailed modeling of DF3 using the Meudon PDR code shows that the emission of the [S l] 25.249 µm line is coming from warm (>40 K) molecular gas located atAV~1–5 mag from the ionization front. Moreover, the intensity of the [S l] 25.249 µm line is only accounted for if we assume the presence of undepleted sulfur. Conclusions.Our data show that sulfur remains undepleted along the ionic, atomic, and molecular gas in the Orion Bar. This is consistent with recent findings that suggest that sulfur depletion is low in massive star-forming regions because of the interaction of the UV photons coming from the newly formed stars with the interstellar matter.more » « less
An official website of the United States government
